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We investigate numerically the depinning transition of the Kuramoto-Sivashinsky equation in a washboard
potential in one dimension, and find three distinct behaviors. For a certain range of parameters, the transition
is well described by the mean field exponent of 1/2. The next case is that the critical behavior is dominated by
the growth of spatially periodic mode with critical exponent 1. Finally, a parameter range exists in which
intermittent movement is observed. “Anchor,” which is a spontaneously generated coherent structure, acts as a
pinning center. The destruction of anchor is shown to involve a topological change of “unknotting.”
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Pattern formation in the nonequilibrium system is widely
observed in many physical, chemical, and biological sys-
tems, and has been the subject of many studies for a few
decades[1]. One of the current issues is the effect of external
perturbation on a pattern forming system. Frequently, such a
system interacts with its surrounding, and understanding the
effect of extrinsic perturbation is of great theoretical and
practical importance. Examples of such systems include light
sensitive Belousov-Zhabotinsky reaction, catalytic oxidation
on metal surface, and array of chaotic electrochemical oscil-
lators [2]. Various spatiotemporal patterns observed in these
experiments and their theoretical models have been studied
extensively[3–5].

It is often the case that such systems follow external forc-
ing for sufficiently large forcing amplitude. In the “moving”
frame of the forcing, the systems are “pinned.” As the forc-
ing amplitude decreases, deviation from the motion of the
forcing starts to appear, and the system become “depinned.”
Although depinning is a prominent feature of many forced
pattern forming systems, we are not aware of any quantita-
tive study on the transition. Also, the depinning transition is
related to the synchronization among coupled chaotic oscil-
lators [6].

In this paper, we study numerically the depinning transi-
tion of a one-dimensional phase equation derived from
forced complex Ginzburg-Landau equation(CGLE) around
1:1 locking. The phase equation is essentially the Kuramoto-
Sivashinsky equation[7] in a washboard potential. Depend-
ing on parameters, three distinct transition behaviors are ob-
served. First is a mean field behavior. For a certain range of
parameters, spatial modulation plays no role, and the transi-
tion is well described by the mean field exponent ofu=1/2.
The exponentu is defined byV,eu, wheree is the reduced
forcing amplitude andV is the rotation rate, which is equal
to the average velocity of phase. The next case is that the
critical behavior is dominated by the growth of unstable
modes with finite wavelength. An approximate expression
for the growth rate is obtained, and it predictsu to be 1,
which is in excellent agreement with numerical simulations.

Finally, there exist a parameter region within which intermit-
tent movement is observed. “Anchor,” which is one of co-
herent structures spontaneously generated, plays a key role
as a pinning center near the transition. In four-dimensional
phase space, anchor has the structure of a knot, and its de-
struction involves a topological change of “unknotting.”

The complex Ginzburg-Landau equation(CGLE) is the
universal amplitude equation for the class of systems where
the bifurcation at the onset of a pattern is supercritical and
oscillatory, and the most unstable wavenumber is zero[1,8].
When a sinusoidal forcing is added, it was shown that an
additional term should be included, which can be determined
from the conditions of spatial and temporal translation in-
variance[3]. Near 1:1 resonance, the resulting equation is

]tA = s1 + indA − s1 + iaduAu2A + s1 + ibd¹2A + g, s1d

in the reference frame of the forcing. Here,Asx,td is complex
amplitude describing slow modulation of uniform oscillation.
The forcing is represented by dimensionless forcing fre-
quencyn and forcing amplitudeg. The real constanta is
related to nonlinear frequency shift, andb is to relative dis-
persion[1,8].

An approximate phase equation can be derived from Eq.
(1) using the assumption thatR follows adiabaticallyf,
whereA=Reif [9]. The resulting equation is

]tf = v − B sin f + bs]xfd2 + c]x
2f + d]x

4f, s2d

wherev=n−a, B=gÎ1+a2, anda,b,c, andd are constants
given by a=a−v /2, b=a−b−v /2, c=1+ab−bv /2, and
d=−b2/2. The biharmonic terms]x

4fd is present to ensure
the stability of solution when the harmonic term is destabi-
lizing due to negativec. Compared to the Kuramoto-
Sivashinsky (KS) equation [7], two additional terms are
present in the equation:(1) constant driftv due to frequency
mismatch, and(2) harmonic “force” termB sin f. In other
words, the effect of the external forcing is to add a wash-
board potentialVsfd=−vf−B cosf to the KS equation.
The drift term tries to move the phase in one direction, while
the harmonic term tends to pin such a movement. The KS
equation has a wide range of applications from chemical
wave to ion sputtering, and is central in the study of spa-
tiotemporal chaos in extended systems[7]. Equation(2) is
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expected to show generic features of the systems in which
pattern forming instability, periodic potential, and driving
force are competing with each other. Therefore, the phase
equation is also important irrespective of its relation to the
forced CGLE.

The unforced system is characterized by two
parameters—a and b. The effect of the forcing has been
studied for several combinations ofa andb, and more inter-
esting case of Benjamin-Feir unstable regions1+ab,0d
will be reported here[8]. Defect, a point in space withuAu
=0, is present in the amplitude turbulence part of the region,
and the phase equation can no longer be a good approxima-
tion of the original Eq.(1). The case ofa=−3/4, b=2,
which is in the phase turbulence regime, will be mainly dis-
cussed throughout this letter. Although defect is absent in the
regime for the CGLE, it can still appear in a forced CGLE
[4]. We have also studied numerically the depinning transi-
tion of the original forced CGLE Eq.(1). Indeed, a few dif-
ferences from the phase equation have been found. However,
many of the results to be discussed later, including the mean
field and mode growth dominated behaviors, are also ob-
served. The full description on the results of the forced
CGLE and phase equation will be published elsewhere[10].

Equation(2) has one stable homogeneous(“flat” ) solution
in f0,2pd interval, which is stable against uniform perturba-
tion, only whenB is larger thanuvu. A linear stability analysis
shows that the flat state is linearly stable whenB is larger
than stability borderBf, where the wavenumber of the most

unstable modek0 is Î−c/2d for cø0, and is zero otherwise.
As B becomes smaller thanBf, stationary periodic pattern
(“stripe”) with wavelength 2p /k0 appears through a super-
critical bifurcation[9]. As B decreases further(belowBs), the
stripe state becomes no longer stable, and starts to fluctuate
in time. AsB decreases even further belowBd, average phase
has a nonzero drift. Define rotation rateV by
limt→`fkfsx,tdl−kfsx,0dlg / t, wherek¯l denotes spatial av-
erage. The rotation rate is zero forB.Bd (the system is
“pinned”), and becomes nonzero belowBd (“depinned”).
Three borders—Bf, Bs, andBd—are shown in Fig. 1.

Mean field approximation of Eq.(2) is obtained by ignor-
ing the terms involving spatial derivative:

ḟ = v − B sin f. s3d

For Bù uvu, there exist a stable fixed point at which the sys-
tem is pinned. ForB, uvu, the average phase moves with
time, and it is easy to show that the magnitude of rotation
rate V is given byÎv2−B2. Here, depinning occurs atBd
= uvu as a result of a saddle node bifurcation. The depinning
transition is characterized by critical exponentu defined by
V,sBd−Bdu, and u for the mean field equation is 1/2. In
general, mean field approximation is crude, but it will de-
scribe the critical behavior well if spatial modulation is neg-
ligible. Consider again the linear stability of the flat state.
The wavenumber of the most unstable modek0 is zero for
c.0, which is equivalent tov,vc=2s1+abd /b=−1/2. It
can also be shown thatBf coincides withBd if k0=0. These
facts imply that spatial modulation can be ignored near the
transition forvøvc, which is confirmed by numerical inte-
gration. The mean field exponent ofu=1/2 is clearly dem-
onstrated as shown in the inset of Fig. 2.

When v is above, but remains close tovc svc,v
&−0.03d, a different transition behavior is observed. Figure
2 shows the dependence ofV on B for v=−0.25. Away from
the transition pointBd, the data are well described by the
square root behavior of the mean field solution. AsB ap-
proachesBd, however, the system crosses over to a linear
behavior ofu=1. The time evolution of the average phase
kfl and the fluctuation of the phasedf;Îkf2l−kfl2 for
v=−0.05 near the transition is shown in Fig. 3. After an
initial transient, the motion is very regular. It consists of
“growth stage” of durationtg and “jump stage” of duration
t j. At the beginning of the growth stage[marked as(a) in
Fig. 3], the phase field is nearly homogeneous. As the am-
plitude of unstable modes grow exponentially, which in-
creasesdf [(b) in Fig. 3], part of the system approaches the
unstable homogeneous solution. After crossing it, two fronts
rapidly propagating in opposite directions appear[curve (c)

FIG. 1. The stability borders of the “flat” stateBf (dotted line)
and the “stripe” stateBs ssd for the phase equation Eq.(2) with
a=−3/4 andb=2 are shown. Also shown is the depinning thresh-
old line Bd sjd.

FIG. 2. Log–log plot of −V vs sBd−Bd at v=−0.25 sBd

=0.250 122d. Data from numerical integration(triangles) is shown,
along with a linear(dotted line) and square root(dashed line) be-
havior. Measured growth rate of the amplitude of the stripe state
(squares) and predictions from a linear stability analysis(solid line)
are also plotted. Shown in the inset is theB dependence ofV for
v=vc=−0.5 sBd=0.5d, which is well fitted by a square root
function.
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in the inset]. They annihilate after colliding with each other,
leaving the phase field nearly homogeneous like(a) with kfl
decreased by 2p [curve (d)]. Then the process is repeated.

Since the average phase decreases by 2p during the pe-
riod of tg+t j, rotation rateV is −2p / stg+t jd. The time oftg

increases, and diverges asB approachesBd, while t j remains
finite. Note also thattg is inversely proportional to the
growth rates of the most unstable mode. Combining both,
we obtainV=−2p / stg+t jd<−2p /tg,−s. Since the depin-
ning transition pointBd is very close to the stability border
Bf of the flat state,s can be approximated bysmax—the
growth rate of the most unstable mode nearBf. In Fig. 2,
measured values ofs for v=−0.25 are shown along with
smax, where the agreement between the two are clear. By
expandingsmax aroundBd, one obtainssmax,sBd−Bd, im-
plying u=1.

A completely different depinning transition behavior is
observed forv*0.1. Rotation rateV in the regime is much
smaller than that of the mean field theory, and the motion is
very irregular. Shown in Fig. 4(a) is the time evolution of
average phasekfl. The most notable feature is the presence
of “plateau” of various length, making the evolution inter-

mittent. Near the transition, the average length of the plateau
becomes long and dominates time evolution. Faceting, which
nearly spans the whole system, is always observed at plateau
[Fig. 4(b)]. Once such a large facet is formed, the field trans-
lates in thex direction while almost preserving its shape
[e.g., compare Eqs.(2) and(3)], resulting no change ofkfl.
Eventually, the facet becomes unstable(4), followed by rela-
tively fast advance ofkfl, until a new system wide facet is
formed. The intermittent behavior shown in Fig. 4 is similar
to that in the synchronization of coupled chaotic oscillators
[6].

Next, the mechanism for the faceting will be discussed.
Start with the observation that a few local structures fre-
quently appear near the transition. Two of them—“anchor”
and “reef”—are displayed in Fig. 5(a). A coherent structure
is a solution of the formfsx−vtd for a suitable choice off
andv [11]. It is found that both anchor and reef are coherent
structures based on 25 independent simulations using differ-
ent values ofv, B, and initial condition: no significant evo-
lution in shape is observed. The measured velocityv is very
small, and no selection mechanism is apparent. For the pa-
rameter region of the present discussionsv*0.1d, the sys-
tem is spatially periodic with significant amplitude of modu-
lation near the transition. AsB decreases belowBd, a pair of
2p kinks can be created by fluctuation, and they can propa-
gate and annihilate upon collision. Here, anchor plays a par-
ticularly important role. Once formed, it is quite stable, and
acts as a strongly pinned site. Since another part of the sys-
tem advances by creation and annihilation of kinks, the span
of the phase field increases, resulting in a system wide facet.

The stability of anchor can be understood by dividing the
terms in the phase Eq.(2) into three parts:(1) potential term
of v−B sin f, (2) nonlinear term ofbs]xfd2; and (3) linear
derivative term ofc]x

2f+d]x
4f. The contributions of these

terms around coherent structures withv=0.25 and B
=0.1972 are shown in Fig. 5(b). One of the main features is
that the linear derivative term is relatively small except near
the center of anchor or reef, and the potential term and non-
linear term are almost identical except their sign. The bal-
ance between the two makes an anchor stable to small fluc-
tuations: If the slope of an anchor increases by deformation,

FIG. 3. Time evolutions of average phase(solid line, left axis)
and spatial fluctuation of phase(dotted line, right axis) are shown
for v=−0.05 andB=0.054 35. The motions are almost periodic.
Shown in the inset are four selected snapshots of the phase field.

FIG. 4. (a) Irregular time evolution of average phase atv
=0.25 andB=0.1972, where a system wide facet is present at each
plateau,(b) four snapshots of the phase field before(1) and after
(4), and during(2) and (3) a plateau.

FIG. 5. (a) A system wide facet, atv=0.25 andB=0.1972
where 2p kinks are connected by coherent structures such as anchor
and reef.(b) Contribution to the phase equation is divided into three
parts: potential termv−B sin f, nonlinear termbs]xfd2, and linear
derivative termc]x

2f+d]x
4f.
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the contribution of the nonlinear term increases while that of
the potential term is not much changed. As a result, the slope
of the kinks around the anchor decreases, restoring the an-
chor to the original shape. Similar restoring mechanism is
applied when the slope of an anchor is decreased.

Collapse of a system wide facet is always initiated by
destruction of the anchor. Fluctuations near an anchor in-
duces small deformations which is fast decaying. However,
large deformation can appear, and the local slope of the two
local minima in the anchor can be reduced significantly
enough that the nonlinear term is negligible. Then the poten-
tial term becomes dominant, and pulls up the curve.

Additional insights can be obtained by studying anchor in
a phase space. For a coherent structure, Eq.(2) can be re-
written as a set of four coupled first order differential equa-
tions df /dx=f8, df8 /dx=f9, df9 /dx=f-, df- /dx=−fv
−B sin f−bsf8d2+cf9g /d, for the variables off, f8, f9,
andf-. In Fig. 6, a sequence of images for the destruction of
an anchor is shown in a three dimensional projection of the
phase space. An anchor prior to collapse is shown in(a). The
main “loop” corresponds to the double minimum of the an-
chor, and the two rings at the end are 2p kinks around it. The
lines extending from the rings cross at top, resulting in a
knotted structure. The pretzel-like structure of(a) can be
regarded as an open ended-trefoil knot, a well known struc-
ture in knot theory[12]. The destruction of anchor is initiated
by a large perturbation which makes one half of the loop to
expand outward and pass a ring(b), which is equivalent to
the deformation and destruction of the left local minimum in
Fig. 5(a). The resulting single loop(c) then simply stretches
itself, completing the destruction process(d). The fact that
removing an anchor involves a topological change can ex-
plain its stability: the amplitude of the perturbation should be
large enough to change its topological structure. The struc-
ture of anchor near the transition is studied with varyingv. It

is found that the knotted topological structure is preserved,
but the radius of the main loop decreases with decreasingv,
which makes it less stable. No stable anchor is observed for
v&0.1 [10].

We have studied the depinning transition of the
Kuramoto-Sivashinsky equation in a washboard potential,
and have found three distinct regimes:(1) mean field,(2)
regime which is determined by the most unstable mode, and
(3) intermittent growth regime. Compared to the first two,
understanding of the last regime is largely qualitative, and
more quantitative study is strongly desired.
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FIG. 6. Time evolution of the destruction of an anchor in a
three-dimensional projectionsf8 ,f9 ,f-d of the four-dimensional
phase space with atv=0.25 andB=0.1972. Note that the pretzel
shaped knot is untied.
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