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Depinning transition of a pattern forming system in a washboard potential
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We investigate numerically the depinning transition of the Kuramoto-Sivashinsky equation in a washboard
potential in one dimension, and find three distinct behaviors. For a certain range of parameters, the transition
is well described by the mean field exponent of 1/2. The next case is that the critical behavior is dominated by
the growth of spatially periodic mode with critical exponent 1. Finally, a parameter range exists in which
intermittent movement is observed. “Anchor,” which is a spontaneously generated coherent structure, acts as a
pinning center. The destruction of anchor is shown to involve a topological change of “unknotting.”
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Pattern formation in the nonequilibrium system is widely Finally, there exist a parameter region within which intermit-
observed in many physical, chemical, and biological systent movement is observed. “Anchor,” which is one of co-
tems, and has been the subject of many studies for a fewerent structures spontaneously generated, plays a key role
decadegl]. One of the current issues is the effect of externalas a pinning center near the transition. In four-dimensional
perturbation on a pattern forming system. Frequently, such phase space, anchor has the structure of a knot, and its de-
system interacts with its surrounding, and understanding thetruction involves a topological change of “unknotting.”
effect of extrinsic perturbation is of great theoretical and The complex Ginzburg-Landau equati0gBGLE) is the
practical importance. Examples of such systems include lighiniversal amplitude equation for the class of systems where
sensitive Belousov-Zhabotinsky reaction, catalytic oxidationthe bifurcation at the onset of a pattern is supercritical and
on metal surface, and array of chaotic electrochemical osciloscillatory, and the most unstable wavenumber is 7&/§].
lators[2]. Various spatiotemporal patterns observed in thes@vhen a sinusoidal forcing is added, it was shown that an
experiments and their theoretical models have been studiegiditional term should be included, which can be determined
extensively[3-5]. from the conditions of spatial and temporal translation in-

It is often the case that such systems follow external forcvariance[3]. Near 1:1 resonance, the resulting equation is
ing for sufficiently large forcing amplitude. In the “moving”
frame of the forcing, the systems are “pinned.” As the forc- GA=(L+iv)A-(L+ia)|APA+(L+iIBVA+y, (1)
ing amplitude decreases, deviation from the motion of the . :
forcing starts to appear, and the system become “depinned'.n thg reference f rame of the forcmg. Herdx Zt) IS comp Ie>'<
Although depinning is a prominent feature of many forcedamplltudt_a degcnblng slow modulat_|on of_unlform osm_llatlon.
pattern forming systems, we are not aware of any quantitaThe forcing is representeq by dimensionless forcm_g fre-
tive study on the transition. Also, the depinning transition isquency v and forcmg amphtudey._The real constant Is
related to the synchronization among coupled chaotic oscilgaezlfst%(:][tg g]onlmear frequency shift, ajids to relative dis-
lators[6]. o . .

In this paper, we study numerically the depinning transi- An approximate pha_se equation can be _derlv_ed from Eq.
tion of a one-dimensional phase equation derived from(l) “S'”9 thg assumption th‘ﬁ fO”OWS §d|abat|cally¢,
forced complex Ginzburg-Landau equatid@GLE) around whereA=Re” [9]. The resulting equation is
1_: 1 Ioc_klng. The phase equation is essentially fche Kuramoto- b= - B sin ¢+ b(d, )%+ Ca§¢+ dr?ﬁd), (2)
Sivashinsky equatiofi7] in a washboard potential. Depend-
ing on parameters, three distinct transition behaviors are obwhere w=v-«, B:y\s’m, anda,b,c, andd are constants
served. First is a mean field behavior. For a certain range djiven by a=a—w/2, b=a-8-w/2, c=1+aB-Bw/2, and
parameters, spatial modulation plays no role, and the transtt=—?/2. The biharmonic ternid¢) is present to ensure
tion is well described by the mean field exponen®#efl/2.  the stability of solution when the harmonic term is destabi-
The exponent is defined by~ €, wheree is the reduced |izing due to negativec. Compared to the Kuramoto-
forcing amplitude and) is the rotation rate, which is equal Sivashinsky (KS) equation[7], two additional terms are
to the average velocity of phase. The next case is that thgresent in the equatiolil) constant driftw due to frequency
critical behavior is dominated by the growth of unstablemismatch, and2) harmonic “force” termB sin ¢. In other
modes with finite wavelength. An approximate expressionyords, the effect of the external forcing is to add a wash-
for the growth rate is obtained, and it predidsto be 1, board potentialV(¢)=-w¢-B cos¢ to the KS equation.
which is in excellent agreement with numerical simulations.The drift term tries to move the phase in one direction, while

the harmonic term tends to pin such a movement. The KS

equation has a wide range of applications from chemical
*Electronic address: lontano@Kisti.re.kr wave to ion sputtering, and is central in the study of spa-
"Electronic address: jysoo@kisti.re.kr tiotemporal chaos in extended systefii$. Equation(2) is
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FIG. 1. The stability borders of the “flat” stai (dotted ling FIG. 2. Log-log plot of € vs (B4—B) at w=-0.25 (By
and the “stripe” statd; (O) for the phase equation E@) with -0 250 122. Data from numerical integratiofiriangleg is shown,
a=—_3/4 andp=2 are shown. Also shown is the depinning thresh-a|0ng with a lineardotted ling and square rootdashed ling be-
old line By (M). havior. Measured growth rate of the amplitude of the stripe state

ﬁquare}sand predictions from a linear stability analyss®lid line)
are also plotted. Shown in the inset is tBedependence of) for

=w.=-0.5 (B4=0.5, which is well fitted by a square root
unction.

expected to show generic features of the systems in whic
pattern forming instability, periodic potential, and driving
force are competing with each other. Therefore, the phas
equation is also important irrespective of its relation to the
forced CGLE.

The unforced system is characterized by two =w-Bsin ¢. (3)
parameters—e and B. The effect of the forcing has been
studied for several combinations afand 3, and more inter-  For B=|w|, there exist a stable fixed point at which the sys-
esting case of Benjamin-Feir unstable regidn+@B<0)  tem is pinned. FoB<|w|, the average phase moves with
will be reported herd8]. Defect, a point in space witA| time, and it is easy to show that the magnitude of rotation
=0, is present in the amplitude turbulence part of the regionsate ) is given by Vw?-B?. Here, depinning occurs &,
and the phase equation can no longer be a good approximajw| as a result of a saddle node bifurcation. The depinning
tion of the original Eq.(1). The case ofa=-3/4, =2, transition is characterized by critical exponehtlefined by
which is in the phase turbulence regime, will be mainly dis-()~ (B,-B)?, and 6 for the mean field equation is 1/2. In
cussed throughout this letter. Although defect is absent in thgeneral, mean field approximation is crude, but it will de-
regime for the CGLE, it can still appear in a forced CGLE scribe the critical behavior well if spatial modulation is neg-
[4]. We have also studied numerically the depinning transijigible. Consider again the linear stability of the flat state.
tion of the original forced CGLE Eql). Indeed, a few dif-  The wavenumber of the most unstable mdgés zero for
ferences from the phase equation have been found. Howevey: 0, which is equivalent taw< w.=2(1+ap)/B=-1/2. It
many of the results to be discussed later, including the meagan also be shown th&; coincides withBy if k,=0. These
field and mode growth dominated behaviors, are also obfacts imply that spatial modulation can be ignored near the
served. The full description on the results of the forcediansition forw= w,, which is confirmed by numerical inte-

CGLE and phase equation will be published elsewli&®.  gration. The mean field exponent 6£1/2 isclearly dem-
Equation(2) has one stable homogeneqtfat”) solution  onstrated as shown in the inset of Fig. 2.

in [0,27) interval, which is stable against uniform perturba-  \when  is above, but remains close to, (w.<o
tion, only whenB is larger tharje|. A linear stability analysis  <-0.03, a different transition behavior is observed. Figure
shows tha_t the flat state is linearly stable whgns larger 5 shows the dependence@fon B for w=-0.25. Away from
than stability bordeB;, where the wavenumber of the most the transition pointB,, the data are well described by the
unstable modé, is y—-c/2d for c<0, and is zero otherwise. square root behavior of the mean field solution. Bsap-

As B becomes smaller thaB;, stationary periodic pattern proachesBgy, however, the system crosses over to a linear
(“stripe”) with wavelength 2r/k, appears through a super- behavior of§=1. The time evolution of the average phase
critical bifurcation[9]. As B decreases furthebelowBy), the  (¢) and the fluctuation of the phasgp= (¢ —(¢)* for
stripe state becomes no longer stable, and starts to fluctuaie=-0.05 near the transition is shown in Fig. 3. After an
in time. AsB decreases even further bel@y, average phase initial transient, the motion is very regular. It consists of
has a nonzero drift. Define rotation rat€l by  “growth stage” of durationry and “jump stage” of duration
lim_.[(&(x,1))=((x,0))]/t, where(- - -) denotes spatial av- 7;. At the beginning of the growth stadenarked aga) in
erage. The rotation rate is zero f&>By (the system is Fig. 3], the phase field is nearly homogeneous. As the am-
“pinned”), and becomes nonzero beloBy (“depinned).  plitude of unstable modes grow exponentially, which in-

Three borders-B;, B;, andBg—are shown in Fig. 1. creases¢ [(b) in Fig. 3], part of the system approaches the
Mean field approximation of Eq2) is obtained by ignor- unstable homogeneous solution. After crossing it, two fronts
ing the terms involving spatial derivative: rapidly propagating in opposite directions appgaurve (C)
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and reef(b) Contribution to the phase equation is divided into three
parts: potential ternm—B sin ¢, nonlinear termb(d,¢)?, and linear

FIG. 3. Time evolutions of average phas®lid line, left axi
ge phat ?  Gerivative termcdzp+dd .

and spatial fluctuation of phagdotted line, right axisare shown
for ¥=-0.05 andB=0.054 35. The motions are almost periodic.
Shown in the inset are four selected snapshots of the phase fieldMittent. Near the transition, the average length of the plateau
becomes long and dominates time evolution. Faceting, which
in the inset. They annihilate after colliding with each other, nearly spans the whole system, is always observed at plateau
leaving the phase field nearly homogeneous (&ewith (¢) [Fig. 4(b)]. Once such a large facet is formed, the field trans-
decreased by 2 [curve(d)]. Then the process is repeated. lates in thex direction while almost preserving its shape
Since the average phase decreases dyd@ring the pe- [€.9., compare Eq¢2) and(3)], resulting no change di).
riod of 74+ 7}, rotation rate() is =27/ (74+ 7). The time ofr, Eventually, the facet becomes unstagly followed by rela-
increases, and diverges Bsipproachesy, while 7; remains  tively fast advance of¢), until a new system wide facet is
finite. Note also thatr, is inversely proportional to the formed. The intermittent behavior shown in Fig. 4 is similar
growth rates of the most unstable mode. Combining both, to that in the synchronization of coupled chaotic oscillators
we obtainQ)=-27/(74+ 7)) =~ -2m/ 7y~ —o. Since the depin- [6].
ning transition pointBy is very close to the stability border ~ Next, the mechanism for the faceting will be discussed.
B; of the flat state,c can be approximated by,.—the Start with the observation that a few local structures fre-
growth rate of the most unstable mode n&r In Fig. 2, quently appear near the transition. Two of them—"anchor”
measured values of for w=-0.25 are shown along with and “reef’—are displayed in Fig.(&. A coherent structure
Omax Where the agreement between the two are clear. Bjs a solution of the formf(x—ut) for a suitable choice of
expandingo,,.x aroundBy, one obtainsr,,~ (B4—B), im-  andwv [11]. It is found that both anchor and reef are coherent
plying 6=1. structures based on 25 independent simulations using differ-
A completely different depinning transition behavior is ent values ofw, B, and initial condition: no significant evo-
observed forw=0.1. Rotation raté) in the regime is much lution in shape is observed. The measured velaeity very
smaller than that of the mean field theory, and the motion ismall, and no selection mechanism is apparent. For the pa-
very irregular. Shown in Fig. (@) is the time evolution of rameter region of the present discussien=0.1), the sys-
average phasép). The most notable feature is the presencetem is spatially periodic with significant amplitude of modu-

of “plateau” of various length, making the evolution inter- lation near the transition. AB decreases beloBy, a pair of
27 kinks can be created by fluctuation, and they can propa-

300 ' 220 T gate and annihilate upon collision. Here, anchor plays a par-
a00 | @ ticularly important role. Once formed, it is quite stable, and
200 F7 e acts as a strongly pinned site. Since another part of the sys-
300 F(1y @) 3) (@) ] - ‘ o tem advances by creation and annihilation of kinks, the span
= SR o180 | R i of the phase field increases, resulting in a system wide facet.
200 ¢ L 3. @ The stability of anchor can be understood by dividing the
160 L - ] terms in the phase ER) into three parts(1) potential term
100 ¢ 1 ‘1:). S of w—B sin ¢, (2) nonlinear term ob(d,$)%; and(3) linear
0 . 140 ( e derivative term ofci2¢+ddié. The contributions of these
0 30000 60000 0 100 200 300 40 terms around coherent structures with=0.25 and B
(@) t (b) x =0.1972 are shown in Fig.(B). One of the main features is

that the linear derivative term is relatively small except near
FIG. 4. (a) Irregular time evolution of average phase @t the center of anchor or reef, and the potential term and non-
=0.25 andB=0.1972, where a system wide facet is present at eaclinear term are almost identical except their sign. The bal-
plateau,(b) four snapshots of the phase field bef¢ig and after —ance between the two makes an anchor stable to small fluc-
(4), and during(2) and(3) a plateau. tuations: If the slope of an anchor increases by deformation,
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the contribution of the nonlinear term increases while that of
the potential term is not much changed. As a result, the slope ¢
of the kinks around the anchor decreases, restoring the an
chor to the original shape. Similar restoring mechanism is
applied when the slope of an anchor is decreased.

Collapse of a system wide facet is always initiated by
destruction of the anchor. Fluctuations near an anchor in-, ¢
duces small deformations which is fast decaying. However,
large deformation can appear, and the local slope of the twc
local minima in the anchor can be reduced significantly )
enough that the nonlinear term is negligible. Then the poten-
tial term becomes dominant, and pulls up the curve.

Additional insights can be obtained by studying anchor in
a phase space. For a coherent structure,(Eqcan be re-

¢I ’

written as a set of four coupled first order differential equa- () q)' (d) q)'
tions dgp/dx=¢’, d¢'/dx=¢", d¢p"/dx=¢", d¢"” /dx=~[w
-B sin ¢—b(¢')?+c¢"]/d, for the variables ofp, ¢, ¢, FIG. 6. Time evolution of the destruction of an anchor in a

and¢”. In Fig. 6, a sequence of images for the destruction ofhree-dimensional projectioty’, ¢, ¢) of the four-dimensional
an anchor is shown in a three dimensional projection of théhase space with a=0.25 andB=0.1972. Note that the pretzel
phase space. An anchor prior to collapse is show@)jinThe ~ Shaped knot is untied.

main “loop” corresponds to the dOUbl minimum O,f the an-js tound that the knotted topological structure is preserved,
chor, and the two rings at the end are @inks around it. The ¢ the radius of the main loop decreases with decreasing

lines extending from the rings cross at top, resulting in ayhich makes it less stable. No stable anchor is observed for
knotted structure. The pretzel-like structure @ can be <0 1[10].

regarded as an open ended-trefoil knot, a well known struc- \we have studied the depinning transition of the
ture in knot theory[12]. The destruction of anchor is initiated Kuramoto-Sivashinsky equation in a washboard potential,

by a large perturbation which makes one half of the 100p 0319 have found three distinct regime4) mean field,(2)
expand outward and pass a rily, which is equivalent 10 yegime which is determined by the most unstable mode, and
the deformation and destruction of the left local minimum IN(3) intermittent growth regime. Compared to the first two,
Fig. 5@. The resulting single loogc) then simply stretches  ngerstanding of the last regime is largely qualitative, and

itself, _completing the_destruction proce@. The fact that  ore quantitative study is strongly desired.
removing an anchor involves a topological change can ex-

plain its stability: the amplitude of the perturbation should be This work is supported in part by the Korea Science and
large enough to change its topological structure. The strucEngineering Foundation through R01-2002-000-00038-
ture of anchor near the transition is studied with varyingt ~ 0(2002 and research fund from IBM Korea.
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